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On the Kirkwood-Modified Tait Equation 
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The pairwise additive potential energy and molecular distribution functions 
are obtained for a one-dimensional fluid satisfying a version of the Kirk- 
wood-modified Tait equation of state. 
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An interesting inverse problem in statistical mechanics is: Given an equation 
of state of  a continuous (classical) fluid, find the intermolecular potentials and 
hierarchy of intermolecular distribution functions that could give rise to this 
equation of  state via an appropriate, Gibbsian grand canonical ensemble. (1~ 
For  pairwise additive potentials, to which we restrict ourselves here, one can 
obtain at least the potential (if not the distribution functions) by Laplace 
inversion of the second virial coefficient, if the potential belongs to a suitably 
restricted class of  analytic functions, (2,3~ or a restricted monotone class of  
functions and the equation of  state can be developed in a virial series. (3~ In 
one dimension a few additive potential models can be completely rigorously 
investigated54-7~ As a result of  such considerations one knows that the usual 
empirical equations employed to represent low-pressure P V T  data (8~ (van der 
Waals, Dietrici, Beattie, Bridgeman, etc.) arise from intermolecular potentials 
containing a long-ranged contribution similar to the Kac-Uhlenbeck-  
Hemmer  (7~ potential as well as short-ranged potential contributions. (9) The 
empirical equations (Ref. 8, pp. 261 if) used for dense, three-dimensional 
fluids, such as the Tait equation and its modification by Kirkwood et al., ~~ 

cannot be studied by these techniques (e.g., by Laplace transform inversion) 
since these equations of  state do not possess a virial development in the usual 
sense. I f  we restrict ourselves to a model one-dimensional, dense fluid with a 
Kirkwood-modified Tait equation, then we can carry out such an investi- 
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gation. Such a study may provide some insight into the nature of the inter- 
molecular potential and the qualitative structure of the short-range order 
in the corresponding three-dimensional fluid, even if it cannot provide any 
information about more delicate mathematical properties of either the three- 
dimensional potential or the distribution functions. 

We choose as dependent variable p, the number density of our fluid, 
which we take to be a function of pressure and temperature T. We write 
P = 0(/3, P), where t3 = 1/kT and the real pressure is/3-~p. In terms of these 
variables the Kirkwood-modified Tait equation can be written (Ref. 8, 
pp. 261 if) 

where 

L o + a(/3)]7(fl) = p" (1) 

~(/3) =/3A(~), v(~) = P"~, 0 ) / ~ )  

with A(fi) the function which appears in the Tait equation (11) (p is here the 
real pressure) 

1 
Modification of (2) is required at high pressures since the right-hand side of 
the Tait equation (2) approaches infinity while the left-hand side cannot 
exceed one. The independent variables in (1) are sometimes taken to be 
entropy and pressure to simplify calculations in which (1) is employed. The 
parameter n is the specific heat ratio only for the perfect gas equation with 

= 0, n = 1. A crude but convenient equation for liquid adiabats is obtained 
by setting n = 3. (a) We will carry out our calculations for the case n = 2, in 
one dimension, which leads to a pairwise additive potential 13-1V(x,/3) = 
/3-ZV(x) and distribution functions expressible in terms of elementary 
transcendental functions, rather than infinite series of such functions. 

We suspect that the potential function is temperature dependent. The 
unique inversion can be obtained readily from Eqs. (3), (5), and (6) of Ref. 
12. Writing 

f (x )  = exp(-px)  exp[ -  V(x)] 

one has 

1 _ ~ In  f(x) dx p(p) op 

f? _ 0 In exp(-px)  exp[ -  V(x)] dx 
ot, 

(3) 
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In terms of the normalized nearest neighbor distribution(~a~f(x) 

s f ( x )  = f i x )  f ( x )  ax 

one can express the distribution functions by means of convolutions of f (x , )  
viz. 

g(x) = ~ ( f , f *  ... * f),~(x) (4) 
t t = l  

and 

g . ( x l  .... , xn) = ~-~ g(x ,  +1 - x,)  (5) 
t 

Setting [7(fl)] -z/2 = r < 1 and solving (1) with n = 2 for p(p) and 
substituting into (3), we find 

~0 ~ 
1 r + ~)-1/2 a In f(x) d x  
o op 

o r  

f[ f0 ~ f ( x )  d x  = e-pXe  -v(x) d x  = exp [ -2 r  + a) 1/2] (6) 

The constant of  integration can be taken to be zero since it is cancelled in all 
final expressions involving the normalized f ( x ) ,  and V(x)  is always defined 
only up to an additive constant. Equation (6) is a Laplace transform of 
e x p ( -  F) in the variable p, which yields on inversion 

exp[-  V(x)] = exp(-  r exp[-  (~:/x~)] 

and thus 

V(x) ~2 =-x + ~x  - In  (~rX3)l/--------- ~ (7) 

This temperature-dependent potential diverges to + ~  as x ~ + ~ .  For  suffi- 
ciently large densities in which (1) is used to fit experimental data almost no 
molecules are sufficiently far apart to experience this unphysical region. 

The normalized f ( x )  is 

f ( x , p )  = ~ e x p [ - ( p  + ~)x - ~ / x  + 2~(p + ~)~/2] 
(.x~)~t~ (8) 
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and to find pg(x) via (4) we first take the Laplace t ransform of  bo th  sides to 
obtain, if 

and 

~0 ~176 
Og(s) = e-"~og(x) dx 

f ( s ,  p) = ~ :  e-**f(x) dx = ~: exp{-2~:[(s + p + ~)~/2 _ (p + cO,/=]} 

with 

Writing (1) as 

b = p + a  

a = e x p ( - 2 f ~ / b ) / f  

Z = (�89 ~ In ~ + x/b) 2 > 0 (Z < b, providing ~: < 1) 

This distribution function vanishes at the origin, decays exponentially for  
large x, and oscillates at intermediate values of  x. Equat ions (5), (7), and 
(10) then provide the solution of  our  inverse problem. 

F r o m  our  result for  n = 2 we can obtain the potential  for  all fractional 
n of  the form 

n = 2m/(2m - 1) 

O-1 = ~:m(P + a) -(am-x)/2m 

the identity 

f(s,p) 
pg(s) = [f(s, p)]= = 1 - f ( s ,  p) 

~: exp[-2~:(s  + p + ~)112] 
exp[ -2~: (p  + a) 1/2] - ~ exp[-2~:(s  + p + a)1/2] (9) 

Using the complex contour  integral formulat ion of  the inverse Laplace 
t ransform,  one finds after some manipulat ions that  

X 
pg(x) = exp ( -  bx) {Z-  a/2 [exp(Zx) - 1] exp[2~:(V'b - ~/Z)] + a---Z-fl 

+ - d r [ e x p ( - x r )  - 1]r -2 s in(2fV'r)  
~rr 

x [1 + a ~ - 2a cos(2r  -1} (10) 



On the Kirkwood-Modi f ied Tait Equation 93 

one finds that (6) becomes 

fo fo fm(X) dx = exp(-px) exp[-  Vm(x)] dx 

= exp[-2f,~(p + ~)lj2m] 

Setting 

one has 

with 

Vm(x) = era(X, ~ . )  + ~X 

fo = exp(-px) exp[- era(x, ~m)] d x  = exp(- 2~:,~p 1/2' 0 

(11) 

(12) 

(13) 

r ~)  = (~12/x) - ln[~:~/(~rxa) 1/2] (14) 

by virtue of (7). We now use the following Laplace transform identity: If 

h(p) = [exp(-px)l f (x)  dx 

then 
~ ~ $ 2  

Noting that for m = 2 one has 

fro c9 p exp(-  4f2~/p) = exp(-px) 7xx exp[-r 2~2)] dx 

one finds from (13) and (15) after an integration by parts that 

f exp(-xp) exp[-r f2)] dx 

= exp(-4f2p 1/~) 

fo ( fo 
~o 1 ~ - ~ x  

= dx exp(-px) 2(~rx3)~/8 exp 

x exp[-r 2~:2)]s ds t (16) 

and thus 

exp[-r ~:z) - ax] = exp[- V=(x)] 

~2 exp(-x) (~rx3)~, 2 [ J o d S e x p [ - - ~ }  exp(-2'2/s2)] (17) 
(, ,s) "~ J 
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Finally f rom (16) by  induct ion 

2(~rx3) 1/21 f0~ ( s Z )  [ - ~ x  ( m ) ]  exp[-r  ~:m)] = d s s e x p  exp -q~m-1 X,~--Z-'-f_l~m 

(18) 
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